Veselago lensing with ultracold atoms in an optical lattice.

نویسندگان

  • Martin Leder
  • Christopher Grossert
  • Martin Weitz
چکیده

Veselago pointed out that electromagnetic wave theory allows for materials with a negative index of refraction, in which most known optical phenomena would be reversed. A slab of such a material can focus light by negative refraction, an imaging technique strikingly different from conventional positive refractive index optics, where curved surfaces bend the rays to form an image of an object. Here we demonstrate Veselago lensing for matter waves, using ultracold atoms in an optical lattice. A relativistic, that is, photon-like, dispersion relation for rubidium atoms is realized with a bichromatic optical lattice potential. We rely on a Raman π-pulse technique to transfer atoms between two different branches of the dispersion relation, resulting in a focusing that is completely analogous to the effect described by Veselago for light waves. Future prospects of the demonstrated effects include novel sub-de Broglie wavelength imaging applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long Distance Transport of Ultracold Atoms using a 1D optical lattice

We study the horizontal transport of ultracold atoms over macroscopic distances of up to 20 cm with a moving 1D optical lattice. By using an optical Bessel beam to form the optical lattice, we can achieve almost homogeneous trapping conditions over the full transport length, which is necessary to hold the atoms against gravity for such a wide range. Fast transport velocities of up to 6m/s (corr...

متن کامل

Mode-locked Bloch oscillations in a ring cavity

We present a new technique for stabilizing and monitoring Bloch oscillations of ultracold atoms in an optical lattice under the action of a constant external force. In the proposed scheme, the atoms also interact with a unidirectionally pumped optical ring cavity whose one arm is collinear with the optical lattice. For weak collective coupling, Bloch oscillations dominate over the collective at...

متن کامل

State preparation and dynamics of ultracold atoms in higher lattice orbitals.

We report on the realization of a multiorbital system with ultracold atoms in the excited bands of a 3D optical lattice by selectively controlling the band population along a given lattice direction. The lifetime of the atoms in the excited band is found to be considerably longer (10-100 times) than the characteristic time scale for intersite tunneling, thus opening the path for orbital selecti...

متن کامل

Counterflow superfluidity of two-species ultracold atoms in a commensurate optical lattice.

In the Mott-insulator regime, two species of ultracold atoms in an optical lattice can exhibit the low-energy counterflow motion. We construct effective Hamiltonians for the three classes of the two-species (fermion-fermion, boson-boson, and boson-fermion-type) insulators and reveal the conditions when the resulting ground state supports super-counter-fluidity (SCF), with the alternative being ...

متن کامل

Precision measurement and frequency metrology with ultracold atoms

Precision measurement and frequency metrology have pushed many scientific and technological frontiers in the field of atomic, molecular and optical physics. In this article, we provide a brief review on the recent development of optical atomic clocks, with an emphasis placed on the important inter-dependence between measurement precision and systematic effects. After presenting a general discus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014